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Abstract-The exact solution of the difiusion equation for an instantaneous point source in a uniform, 
time dependent. velocity field is found. This solution contains Taylor’s theory of diffusion by continuous 

movements as a particular case, which is discussed. Influence of molecular difiusivity is assessed. 

NOMENCLATURE 

c, mass concentration. temperature, 
enthalpy; 

Ft. F2. F3, defined by (14); 

I, = J(-1); 
Kl. K2, K3, wave vector in Fourier space; 
X2, modulus squared of wave vector; 

rl, r2, h. separation vector (rj = Xj-x(i); 

L non-dimensional time; 
U1, U2, U3, non-dimensional velocity components; 

Xl,XZ,X3~ Cartesian coordinates ; 
( >3 ensemble average. 

Greek symbols 

r. velocity scale; 

T, time scale : 
5, time difference; 
\‘, non-dimensional molecular diffusivity 

for mass, temperature or enthaipy; 

1’1 3 turbulent diffusivity; 

P. autocorrelation coefficient defined 

by (5); 
6, Dirac delta function; 

l-L product. 

Superscripts 
* denotes dimensional form; 

coordinates of another point; 
L 

threedimensional Fourier transform. 

Subscripts 

i, j. m, coordinate index (i, j, m = 1, 2. 3) 
repeated subscript means summation 
on that index. 

1. INTRODUCWON 

DIFFUSION of enthalpy or chemical species in a tur- 
bulent field have deserved much less theoretical atten- 
tion than the turbulent flow itself. The reason seems 
obvious: since the fundamental problems of turbulent 
flows are not yet solved, and as the whole of the theory 
still rests on more or less empirical assumptions and 
physical inputs (at one or other level), it does not 

appear to be of much use as a theory of diffusion for 
enthalpy or chemical species which have the knowledge 
of the turbulent field as an essential input. There are, 
however, several reasons for not taking the obvious for 
granted. Among these are: (a) mathematically, the dif- 
fusion equation is of the same type as the momentum 
equations, but simpler, because it is linear in the un- 
knowns; (b) the use of tracers is still largely used for 
the experimental study of t&e turbulent flow itself; 
(c) diffusion of enthalpy or chemical species, is an 
extremely important problem in itself, which suffers in 
its practical applications from the effects of a double 
set of assumptions and empiricisms: those associated 
with the flow and the additional ones from the diffusion. 

The mathematical similarity of momentum and 
species (or enthalpy) diffusion is in fact implied in the 
engineering approaches to the computation of heat 
and mass transfer through the concept of Prandtl or 
Schmidt numbers mainly when used in connection with 
well known “models of turbulence”. However, that 
physical similarity in the way which is usually done 
in engineering is only mathematically supported to a 
limited extent. Mathematics says that it can only be 
so when v 5 1 and when both fields are already 
dominated by the influence of a uniform boundary 
condition. This inference is supported by experiment 
and clearly points out that a search for experimentally 
based correlation of turbulent Prandtl or Schmidt 
numbers in the general situations of three-dimensional 
flows will probably lead to a dead end. In the best 
experimentally known flow situations. like free 
turbulent boundary-layers. reaction or simply diffusion 
of chemical species with widely different molecular 
diffusivities, or varying boundary conditions com- 
plicates the usual treatments. 

In this paper a different approach is taken. It aims 
at a clarification of the interplay between the physical 
inputs regarding the turbulent flow and the mathemat- 
ical implications on the turbulent diffusion of enthalpy 
or chemical species. In a sense, the present results 
generalise those of Taylor’s pioneering paper [I]. by 
taking into account molecular difisivity : therefore, the 
present results have engineering relevance in problems 
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of polutant dispersion, where Taylor’s results are 
widely used. On a wider sense, subsequent work will 
show how this type of approach is useful in the develop- 
ment of computational models of turbulence. 

Generally speaking, for contaminant diffusion in tur- 
bulent flows, the approximation of neglecting v is 
certainly acceptable if only one contaminant is present. 
However, ifmore than one contaminant is present and 
the relative values of their concentration is important, 
their respectivediffusivities must be taken into account. 
For instance, the relation between v for Hz and O2 
in air is + 4.3. The relation will increase with the ratio 
of molecular weights. and certainly must be considered 
if their chemical reaction is the main concern. 

2. OUTLINE OF THE MAIN CONTRIBUTION 

The present results apply to an unbounded flow field 
and an instantaneous point source, assuming as a 
starting point the fundamental partial differential 
equation for the diffusion of enthalpy or chemical 
species, The flow field is assumed spatially uniform and 
arbitrarily time dependent. Extension to non-uniform 
shear flows is, however. mathematically straight- 
forward because the fundamental solution obtained 
can be extended by the parametrix method’ to any 
arbitrarily space and time dependent flow. 

The general solution is obtained in closed form as 
a definite integral whose integrand is the analytical 
expression of the flow field. The physical input enters 
at this level in the form of an assumed probability 
distribution. This distribution is assumed gaussian. If 
the velocity components are also assumed statistically 
independent a generalization of Taylor results with 
inclusion of molecular effects is obtained. These are 
particularly useful when more than one chemical 
species are present. Further, it is shown that, with all 
the above restrictions, the ensemble average concen- 
tration, when r -+ co, is the solution of a heat conhuc- 
tion type equation Se,l& = v,V2c with a well defined 
expression for the turbulent diffusivity (v, = 2(ujuj)). 
This, however, is more the exception than the rule: 
other types of probability distribution or the inclusion 
of shear effects cannot be reduced in general to a 
meaningful and generally valid Prandtl or Schmidt 
number. 

3. FUNDAMENThL SOLUTION 

The concentration of a passive contaminant on a 
uniform velocity field LF,?( t) is given by : 

(1) 

the molecular diffusivity \I* is assumed constant. Uj’(t*) 
will be subject to the condition 

CL;*) =o. (2) 

Equation (1) may be made non-dimensional with the 
help of two scales. These scales, 1‘ and T will be chosen 
such that 

U.*L-. dr* , : (3) 

and 

et 
T= 

! 
p(T)dT (4) 

0 

where P(T) is defined by 

p(s) x (Uj*(t*) x Uj*(t*)> = (Ujyt*) x L’j*(t* i-T.)). (5) 

Equation (1) when expressed in terms of the above 
defined nondimensional quantities, becomes: 

2 ^ i-zc 
~+Uj~=V- 

I d.KjS.Kj 

where : 

x: 
.Kj = - 

I-T 

Uj = F 

V* 
,I = 7 

Y-T 

(6) 

(7) 

Equation (6) is solved subject to the initial condition 

c(x, t = 0) = 6(x-x’) (8) 

which corresponds to a zero concentration everywhere, 
except at x = x’. 

Integration of equation (8) may be achieved using a 
three-dimensional integral Fourier Transform 

9 

;= 
SSJ‘ 

eXp{lKjXj).C(X,t)dX (9) 

-I: 
m 

1 

c=(2K)3 
exp{ -IK~.x~} i‘(K, t)dK f 10) 

-x) 
where 

I =J(-1). 

Introducing (10) in (6) yields 

2t 
t + (VK’ + IKj L’j)t = 0 (11) 

whose solution is 

(VK’ +  fKj Uj)dt 

=exp!-lk,.;-jd(VK’+iK,~j)dt}. (12) 

Inverting the transformation 
+ZZ 

1 

c=oj Ki 
eXp{ -VtK’+IKj[(Xj-Xi)-Fj(t)]}dK (13) 

--I) 

where: 

Fj(tj = Uj(t’)dt’. (14) 
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Performing the integration over the space K, equation 
(13) becomes (see Appendix) 

1 
c= 03’2exp 

1 
-& [rjsFj][rjmFj]} (l.5) 

where rj is the separation vector, rj = Xj-xJ. 
Equation (15) is the fundamental solution, whose 

expression depends on Fj(t). 

4. MEAN VALUES FOR GAUSSIAN AND 
UNCORRELATED F,(t) 

The mean value of c may be obtained by ensemble 
averaging (15). If F1, F1, Fj are assumed Gaussian and 
uncorrelated, the probability density distribution of Fj 
is given by: 

P(Fl, Fz 3 F3) 

1 1 =-_- exp ------ 
(27t)3’2 0162 63 

(16) 

The quantities cl, oz and o3 are the variances of F1, 
F2 and FsF3. respectively. Ensemble averaging equation 
(15) and using relation (16). (c) is given by: 

(c(x, r, f)> 
1 1 =-- 

(4nvc)3’2 (2n)3’2 

(note tnat repeated index, m, does not represent sum- 
mation). 

Noting that ([2], p. 307) 

s l-m 

-52 

exp(-px2-tqx)dx= ty”exp{$, (18) 

equation (17) yields: 

All the above results apply to the situation where 
(L’j) = 0. However, if (L’j) is different from zero. the 
results may be applied to a coordinate system moving 
with a constant velocity (UJ. Extension to a time 
dependent (Uj) is restricted to situations when the 
time scales of the motion (Vi) are sufficiently high 
when compared with T. 

5. FINAL REMARKS AND CONCLUSIONS 

The main result is expressed by (15). Expression (19) 
embodies two fundamental assumptions: Gaussian dis- 
tribution and uncorrelation of the Fj among them- 
selves. Those assumptions with the additional one of 
v -+ 0 set the limitations of Taylor’s theory, within the 
framework of the fundamental diffusion equation. 

Gaussian distribution of the Fj. can be formally 
deduced from the assumption of Gaussian distribution 
of the Uj only when c + co ; such inference is plausible 
on physical grounds. A mathematical proof is not 
known to us. 

Within the intrinsic assumptions of Taylor’s theory. 
result (19) shows the influence of finite v’, however small. 
This inAuence is likely to be practically relevant when 
chemical species with different v are present, mainly 
when reaction among themselves is important. 

From the above results, it becomes clear that the 
existence of a turbulent diffusivity will be more the 
exception than the rule, at least in rigorous terms. In 
fact, only when the above referred assumptions are 
acceptable and when t -+ co does such a turbulent 
diffusivity have a formal meaning. 

Some of the limitations which are implied in (19) 
are easily removed. The most straightforward is the 
independence of the Fj. If they are assumed Gaussian, 
taking into account their correlation only amounts to 

1 1 

“’ = x3!2 ~(4\~r)3+2(4\~t)~(~:+a:+o:)+4(4vt)(a:a~+a~a:+o~a:)+8ufu:u:}”2 

r! r$ r: 
xexp 

2~: + 4vr 2~: + 4vr 
\ ---------------=----- . 

2tr$ +4vtj 
(19) 

Since the field is assumed uniform, Uj = u,(r). Further- 
more. the summation of the uj” satisfies the following 
limiting conditions: 

for r -+O (20) 

j$l uf = 2Y’Tt for t -+ co. (21) 

For any value of t, 
3 

is known, provided the autocorrelation p (equation 5) 
is known. 

Equation (19) shows that for high Reynolds numbers 
(i.e. I’ = 0), the influence of molecular diffusivity is very 
small. Furthermore, for t -+ CC, the solution coincides 
with that of &/at = v,V2c, with vr = 2Y2T. 

a (very) tedious work to arrive at an exact final 
expression. Assumption of other types of distribution 
is done starting from (15). 

From a practical point of view, one of the first 
extensions comes from an assumption of a form for p, 
taking into account the limiting cases of t = 0 and 
t = cc!. 

Important, either from a theoretical or a practical 
point of view is the inclusion of shear effects. This is 
done using the fundamental solution (15) and the 
parametrix method. This is an iterative’ method, which 
essentially consists in taking (15) as the starting iter- 
ation. Proceeding in this way. the first iteration shows 
already the effect of shear. 

As a final conclusion, the reported results, besides 
their own interest, are considered mainly important by 
the new lines of research they uncover. 
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Introducing 
APPENDIX 

Zj = [(Xj-XJ--j(f)] = 'j-F,(t) 

(13) can be written 
00 

1 
c=- 

(2x? 
exp{ -(v~K~+IK~Z~)}~K 

--r 

tijZ, is the inner product of the vectors K and 2. whose 
value is 

KjZj = lKIlZ[COSe 

where 0 is the angle between them. 

But IK( = ~(K:+K:+!c:) = R 

121 = J(z:+z:+zs). 

Introducing a coordinate rotation in K space to make Ox, 
coincident with the direction ofvector 2, taking into account 
that the Jacobian of the transformation is 1, and introducing 

spherical coordinates (13) is transformed into 
1 f-z l-r 

C?.n 

J exp{ -(vtR2+1RIZ~cos0)}R2sin0d~ 
0 

exp{ -vtR*jR’dR X 

i 
’ exp{lR/ZIcosB}sin0dB. 

Now “0 

s 

X 
exp{lRlZlcos0}sinBdB=- 2 sinh(fRIZI) 

0 IRIZI 

rlsin(R[ZI) 
= 

RIZI 
and 

exp{ -vtR’}Rsin(RIZl)dR. 

In [2], p. 480, the following result can be found: 

s m 

H== 
0 

exp{ -jR’J cos(bR) = t(i)“‘exp(-5). 

From which : 

dH -- 
db c m 

= expI - 
0 

,PR’JR sin(bR) = 

puttmg p = vt: b = 121 and introducing in c results: 

1 

C=-exp~-~[rj-f,(t)][rj-~j~~~]} (4rvp 

which is (15). 

INFLUENCE DE LA DIFFUSIVITE MOLECULAIRE SUR LA DIFFUSION 
A PARTIR D’UNE SOURCE PONCTUELLE INSTANTANEE SITUEE DANS UN 

CHAMP DE VITESSE UNIFORME ET FONCTION DU TEMPS 

R&urn&On donne la solution exacte de I’tquation de la diffusion pour une source ponctuelle instantante 
situ&e dans un champ de vitesse uniforme et dtpendant du temps. Cette solution contient comme cas 
particulier la thtorie de Taylor de la diffusion par mouvements continus faisant I’objet d’une discussion. 

L’influence de la diffusivitt molCculaire est dttermin6e. 

DER EINFLUSS DES MOLEKULAREN DIFFUSIONSKOEFFIZIENTEN 
AUF DIE DIFFUSION VON EINER MOMENTANEN PUNKTQUELLE IN EIN 

GLEICHFORMIGES, ZEITABHbiNGIGES GESCHWINDIGKEITSFELD 

Zusammenfasaung-Es wird die exakte L&sung der Diffusionsgleichung fiir den Fall der Diffusion von 
einer momentanen Punktquelle in ein gleichrdrmiges, zeitabhtingiges Geschwindigkeitsfeld abgeleitet. Die 
L6sung enthiilt als Spezialfall die Taylor-Theorie filr die Diffusion durch kontinuierliche Bewegungen, 

welche diskutiert wird. Der EinfluB des molekularen Diffusionskoeffizienten wird abgesch&zt. 

BnMIiHME KO~UJ@WL@,~EHTA MOJIEKYnXPHOfi AM@@Y3MM HA IVOUECC 
IIM@@Y3MM OT MrHOBEHHOI-0 TOqErIHOI-0 MCTOYHMKA B OflHOPOflHOM 

3ABMCXuEM OT BPEMEHM I-IOnE CKOPOCTH 

AHHoTnluin - HaBneHo TO~HOepellleHHeypaBHCHHnAH~y3HH~~MrHOBeHHOrO TO'lWHOTOHCTO'i- 

HHKa B OAHOPORHOM 3BBHCIIUleM OT LIpCMeHH IlOJle CKOPOCTH. KaK %XTHbIfi CJIyrla8, paCCMaTpH- 
saeMbrR a cTaTbe, pemeeee aKnmqaeT pa3nonremie Tellnopa jz.nfi rienpepslmtott Ati+$pH~. l-Ion- 

TBepXACHO BJlHIlHW KO3t#WHeHTa MOJlCK)'JlRPHOti AH44Y3HH. 


